Kts23.ru

АЗС оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Требования к свойствам цементов

Требования к свойствам цементов

* В цементе типа ЦЕМ III содержание хлорид-иона Сl — может быть более 0,10 %, но в этом случае оно должно быть указано на упаковке и в документе о качестве.

** В отдельных случаях по специальным требованиям в цементах для преднапряженного бетона может быть установлено более низкое значение максимального содержания хлорид-иона Сl — .

Таблица 6

Массовая доля в цементах активных минеральных добавок в соответствии с ГОСТ 10178-85

Обозначение вида цементаАктивные минеральные добавки, % по массе
всегов том числе
доменные гранулированные и электротермофос-форные шлакиосадочного происхождения, кроме глиежапрочие активные, включая глиеж
ПЦ-Д0Не допускаются
ПЦ-Д5До 5До 5До 5До 5
ПЦ-Д20, ПЦ-Д20-Биюн.20До 20До 10До 20
ШПЦ, ШПЦ-Б20-8020 — 80До 10До 10

Таблица 7

Предел прочности цемента при изгибе и сжатии в соответствии с ГОСТ 10178-85

Обозначение вида цементаГаранти-рованная маркаПредел прочности, МПа (кгс/см2)
при изгибе в возрасте, сутпри сжатии в возрасте, сут
328328
ПЦ-Д0,ПЦ-Д5, ПЦ-Д20, ШПЦ3004,4 (45)29,4 (300)
4005,4 (55)39,2 (400)
5005,9 (60)49,0 (500)
5506,1 (62)53,9 (550)
6006,4 (65)58,8 (600)
ПЦ-Д20-Б4003,9 (40)5,4 (55)24,5 (250)39,2 (400)
5004,4 (45)5,9 (60)27,5 (280)49,0 (500)
ШПЦ-Б4003,4 (35)5,4 (55)21,5 (220)39,2 (400)

Таблица 8

Соответствие цементов по ГОСТ 31108 и ГОСТ 10178, ГОСТ 22266 в соответствии с СТО СТРОЙ 2.6.54-2011 с изм. 2013г.

Цементы по ГОСТ 10178Цементы по ГОСТ 222666
ПЦ Д0, ПЦ Д5ПЦ Д20ШПЦППЦ
Цементы по ГОСТ 31108
ЦЕМ IЦЕМ II/А-Ш
ЦЕМ II/А-П
ЦЕМ II/А-З
ЦЕМ II/А-МК
ЦЕМ II/А-Г
ЦЕМ II/В-Ш
ЦЕМ III/A
ЦЕМ IV

Таблица 11

Основные характеристики цемента в соответствии с ГОСТ 31108-2003

Прочность портландцемента

Согласно ДСТУ, прочность портландцемента характеризуют пределами прочности при сжатии и изгибе. Марку цемента устанавливают по пределу прочности при изгибе образцов балочек 40х40х160 мм и при сжатии их половинок, изготовленных из раствора состава 1:3 (по массе) с нормальным песком при водоцементном отношении В/Ц= 0,4 и испытанных через 28 сут; образцы в течение этого времени хранят во влажных условиях при температуре (20±2)°С. Предел прочности при сжатии в возрасте 28 сут называется активностью цемента.

Рис. 4.14. Формы для изготовления образцов балочек 40х40х160 мм

Для приготовления образцов применяют чистый кварцевый песок постоянного зернового и химического составов, что позволяет исключить влияние качества песка на прочность цемента и получить сравнимые результаты. Прочность портландцемента нарастает неравномерно: на третий день она достигает примерно 40. 50% марки цемента, а на седьмой — 60. 70%. В последующий период рост прочности цемента еще более замедляется, и на 28 день цемент набирает марочную прочность. Однако при благоприятных условиях твердение портландцемента может продолжаться месяцы и даже годы, в 2. 3 раза превысив марочную (суточную) прочность. Можно считать, что в среднем прирост прочности портландцемента подчиняется логарифмическому закону.

Читайте так же:
Ремонт цементной стяжки отдельными местами

Рис. 4.15. Определение предела прочности на изгиб

Теоретический предел прочности цементного камня при сжатии очень велик, составляет более 240. 340 МПа. Практически при формовании бетонов прессованием была получена прочность 280 МПа и более.

Прочность цементного камня и скорость его твердения зависят от минералогического состава клинкера, тонкости помола цемента, содержания воды, влажности, температуры среды и продолжительности хранения. Влияние минералогического состава на прочность портландцемента. Процесс нарастания прочности клинкерных минералов портландцемента различен. Наиболее быстро набирает прочность трехкальциевый силикат: за 7 сут твердения он набирает около 70% от 28-суточной прочности, дальнейшее нарастание прочности значительно замедляется.

Другая картина твердения духкальциевого силиката. В начальный период твердения (до 28-суточного возраста) C2S набирает всего до 15% прочности C3S, но и в последующий период твердения двухкальциевый силикат начинает повышать свою прочность и в какой-то период достигает и даже может превысить прочность C3S. Это явление объясняется тем, что трехкальциевый силикат гидратирует быстрее, чем двухкальциевый. К 28-суточному возрасту гидратации C3S почти заканчивается, а гидратация C2S к этому времени начинает развиваться. Поэтому при необходимости получить бетон высокой прочности в короткие сроки применяют цемент с большим содержанием трехкальциевого силиката — так называемый алитовый цемент, и, наоборот, если требуется высокая прочность в более, позднее время (например, в гидротехнических сооружениях), то можно применять белитовый цемент. Трехкальциевый алюминат сам по себе имеет низкую прочность, однако значительно ускоряет твердение цемента в начальный период. Этим свойством С3А пользуются, получая быстротвердеющий портландцемент. По минералогическому составу он отличается высоким содержанием С3А и C3S (около 60. 70%, в том числе до 10% С3А).

Дата добавления: 2016-09-06 ; просмотров: 2437 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Цемент предел прочности 280

Дом arrowНаучная литература arrowСВОЙСТВА ПОРТЛАНДЦЕМЕНТА arrowПрочность портландцемента

Прочность портландцемента

Предел прочности на сжатие (в МПа) половинок образцов-балочек в возрасте 28 суток называется активностью цемента.

Прочностные показатели портландцемента, а также шлакопортландцемента и их разновидностей приведены в таблице.

Прочностные показатели портландцемента, шлакопортландцемента и их разновидностей

Марка

Предел прочности, МПа (кгс/см2)

при изгибе в возрасте, суток

при сжатии в возрасте,

Портландцемент, портландцемент с минеральными добавками, шлакопортландцемент

Основные отличия ГОСТ 31108-2003 от ГОСТ 10178-85 сводятся к следующему:

— вместо марок введены классы прочности на сжатие, аналогичные установленным EN 197-1. Значения классов прочности имеют вероятностный характер и установлены с доверительной вероятностью 95%;

— для цементов всех классов прочности, кроме требований к прочности в возрасте 28 сут, дополнительно установлены нормативы по прочности в возрасте двух суток, за исключением классов 22,5Н и 32,5Н, а для цементов классов 22,5Н и 32,5Н — в возрасте 7 сут.

— для всех классов прочности, кроме класса 22,5, введено разделение цементов по скорости твердения на нормальнотвердеющие и быстротвердеющие, что позволит минимизировать расход цемента в строительстве за счет его оптимального подбора по скорости твердения.

Новый стандарт предусматривает испытания цемента по новому ГОСТ 30744 с использованием полифракционного песка вместо нормального (Вольского) песка при испытании цемента по ГОСТ 310.1-310.4-81.

Требования к физико-механическим свойствам цементов согласно ГОСТ 31108-2003 приведены в таблице.

Класс прочности цемента

Прочность на сжатие, МПа, в возрасте

Начало схватывания, мин, не ранее

Равномерность изменения объема (расширение), мм, не более

Прочность портландцемента зависит от: а) минерального состава клинкера; б) тонкости помола; в) водоцементного отношения; г) времени и условий твердения; д) времени и условий хранения. Влияние минерального состава клинкера на твердение ПЦ иллюстрирует рисунок, на котором показана кинетика набора прочности отдельных минералов.

Кинетика набора прочности отдельных минералов клинкера

Алит твердеет быстро и набирает высокую прочность. Белит твердеет резко замедленно, но при благоприятных условиях твердения в поздние сроки его прочность может превысить прочность алита. Трехкальциевый алюминат отличается очень высокой скоростью гидратации, но его конечная прочность вследствие рыхлой структуры невысока. Четырехкальциевый алюмоферрит по кинетике набора прочности занимает промежуточное положение между алитом и белитом. Кинетика твердения и конечная прочность ПЦ в целом будет определяться соответственно указанному влиянию отдельных минералов и их содержанию в клинкере.

Тонкость помола оказывает существенное влияние на прочность цемента, так как чем тонкость помола выше, тем выше его скорость твердения.

Влияние водоцементного отношения показано на рисунке. Максимальная прочность цементного камня достигается при оптимальном для данного цемента значении В/Ц (обычно 25…27 %), соответствующем наилучшей структуре материала. Снижение прочности при меньших значениях В/Ц объясняется недостатком порового пространства для размещения новообразований, и как следствие, появлением внутренних напряжений. Уменьшение прочности цементного камня при увеличении В/Ц сверх оптимального объясняется увеличением объема пор, прежде всего капиллярных, появляющихся за счет наличия и последующего испарения излишней воды затворения, не вступившей в химические реакции.

Со временем при твердении цемента в нормальных условиях его прочность значительно вырастает (через 1-2 года может на 30-40 % превысить марочную 28-суточную прочность).

Условия твердения оказывают сильное влияние на прочность цемента. Наиболее быстрое его твердение происходит при повышенной (до 70-80 °С) температуре и относительной влажности среды, близкой к 100 %. Наоборот, высыхание цементного камня, а также его замораживание прекращают твердение, а последнем случае может произойти даже сброс прочности. Особенно отрицательное действие оказывает раннее замораживание (когда цемент еще не набрал достаточной прочности), которое может вызвать разрушение изделий. При низких положительных температурах твердение идет, но медленно.

Хранение цемента, даже при отсутствии прямого доступа влаги, снижает его способность к эффективному твердению. Через 1-3 месяца хранения активность цемента падает на 10-20 %,через 3-6 месяцев – на 30-40 %.

Цемент

Цемент (лат.  caementum  — «щебень, битый камень») — искусственное неорганическое вяжущее вещество. Один из основных строительных материалов. При затворении водой, водными растворами солей и другими жидкостями образует пластичную массу, которая затем затвердевает и превращается в камневидное тело. В основном используется для изготовления бетона и строительных растворов. Цемент является гидравлическим вяжущим и обладает способностью набирать прочность во влажных условиях, чем принципиально отличается от некоторых других минеральных вяжущих — (гипса, воздушной извести), которые твердеют только на воздухе.

Цемент для строительных растворов — малоклинкерный композиционный цемент, предназначенный для кладочных и штукатурных растворов. Изготовляют совместным помолом портландцементного клинкера, активных минеральных добавок и наполнителей.

Содержание

Исторические сведения

Римляне подмешивали к извести определённые материалы для придания ей гидравлических свойств. Это были:

  • пуццоланы (отложения вулканического пепла Везувия);
  • дроблёные или измельчённые кирпичи; , который они нашли в районе г. Эйфеля (затвердевшие отложения вулканического пепла).

Несмотря на различия, все эти материалы содержат в своем составе оксиды: диоксид кремния SiO2 (кварц или кремнекислота), оксид алюминия Al2O3 (глинозём), оксид железа Fe2O3 — и вызывают взаимодействие с ними извести; при этом происходит присоединение воды (гидратация) с образованием в первую очередь соединений с кремнезёмом. В результате кристаллизуются нерастворимые гидросиликаты кальция. В средние века было случайно обнаружено, что продукты обжига загрязнённых глиной известняков по водостойкости не уступают римским пуццолановым смесям и даже превосходят их.

После этого начался вековой период усиленного экспериментирования. При этом основное внимание было обращено на разработку специальных месторождений известняка и глины, на оптимальное соотношение этих компонентов и добавку новых. Только после 1844 года пришли к выводу, что, помимо точного соотношения компонентов сырьевой смеси, прежде всего необходима высокая температура обжига (порядка 1450 °С, 1700 K ) для достижения прочного соединения извести с оксидами. Эти три оксида после спекания с известью определяют гидравлические свойства, и их называют оксидами, обусловливающими гидравличность (факторами гидравличности).

Цемент получается при нагревании гашёной извести и глины или других материалов сходного валового состава и достаточной активности до температуры 1450 °С. Происходит частичное плавление, и образуются гранулы клинкера. Для получения цемента клинкер перемешивают с несколькими процентами гипса и тонко перемалывают. Гипс управляет скоростью схватывания; его можно частично заменить другими формами сульфата кальция. Некоторые технические условия разрешают добавлять другие материалы при помоле. Типичный клинкер имеет примерный состав 67% СаО, 22% SiO2, 5% Al2О3, 3% Fe2O3 и 3% других компонентов и обычно содержит четыре главные фазы, называемые алит, белит, алюминатная фаза и алюмоферритная фаза. В клинкере обычно присутствуют в небольших количествах и несколько других фаз, таких как щелочные сульфаты и оксид кальция.

Алит является наиболее важной составляющей всех обычных цементных клинкеров; содержание его составляет 50-70%. Это трехкальциевый силикат, Са3SiO5, состав и структура которого модифицированы за счет размещения в решетке инородных ионов, особенно Mg 2+ , Al 3+ и Fe 3+ . Алит относительно быстро реагирует с водой и в нормальных цементах из всех фаз играет наиболее важную роль в развитии прочности; для 28-суточной прочности вклад этой фазы особенно важен.

Содержание белита для нормальных цементных клинкеров составляет 15-30%. Это двукальциевый силикат Ca2SiO4, модифицированный введением в структуру инородных ионов и обычно полностью или большей частью присутствующий в виде β-модификации. Белит медленно реагирует с водой, таким образом слабо влияя на прочность в течение первых 28 суток, но существенно увеличивает прочность в более поздние сроки. Через год прочности чистого алита и чистого белита в сравнимых условиях примерно одинаковы.

Содержание алюминатной фазы составляет 5-10% для большинства нормальных цементных клинкеров. Это трехкальциевый алюминат 3СaAS(3CaO*Al2O3*SiO2), существенно измененный по составу, а иногда и по структуре, за счет инородных ионов, особенно Si 4 , Fe 3+ , Na + и К + . Алюминатная фаза быстро реагирует с водой и может вызвать нежелательно быстрое схватывание, если не добавлен контролирующий схватывание агент, обычно гипс.

Ферритная фаза составляет 5-15% обычного цементного клинкера. Это — четырехкальциевый алюмоферрит 4СaAFS(4CaO*Al2O3*Fe2O3*SiO2), состав которого значительно меняется при изменении отношения Al/Fe и размещении в структуре инородных ионов. Скорость, с которой ферритная фаза реагирует с водой, может несколько варьировать из-за различий в составе или других характеристиках, но, как правило, она высока в начальный период и является промежуточной между скоростями для алита и белита в поздние сроки.

Выдающийся учёный химик Шуляченко, Алексей Романович считается отцом русской цементной промышленности. Широкое применение получила шахтная печь Антонова для обжига и производства клинкера.

Виды цемента

По наличию основного минерала цементы подразделяются: [1]

  • романцемент — преобладание белита, в настоящее время не производится; — преобладание алита, наиболее широко распространен в строительстве; — преобладание алюминатной фазы; (Цемент Сореля) — на основе магнезита, затворяется водным раствором солей;
  • смешанные цементы — цементы, получаемые путем смешения вышеприведенных цементов с воздушными вяжущими, минеральными добавками и шлаками, обладающими вяжущими свойствами.
  • кислотоупорный цемент — на основе гидросиликата натрия (Na2O·mSiO2·nH2O), сухая смесь кварцевого песка и кремнефтористого натрия, затворяется водным раствором жидкого стекла.

В подавляющем большинстве случаев под цементом имеют в виду портландцемент и цементы на основе портландцементного клинкера. В конце ХХ века количество разновидностей цемента составляло около 30. [1]

По прочности цемент делится на марки, которые определяются главным образом пределом прочности при сжатии половинок образцов-призм размером 40*40*160 мм, изготовленных из раствора цемента состава 1 к 3 с кварцевым песком. Марки выражаются в числах М100 — М600 (как правило с шагом 100 или 50) обозначающим прочность при сжатии соответственно в 100—600 кг/см2 (10—60 МПа). В настоящее время цемент марки М300 и менее не выпускается. Цемент с маркой 600 благодаря своей прочности называется «военным» или «фортификационным» и сто́ит заметно больше марки 500. Применяется для строительства военных объектов, таких как бункеры, ракетные шахты и т.д.

Также по прочности в настоящее время цемент делится на классы. Основное отличие классов от марок состоит в том, что прочность выводится не как средний показатель, а требует не менее 95% обеспеченности (то есть 95 образцов из 100 должны соответствовать заявленному классу). Класс выражается в числах 30—60, которые обозначают прочность при сжатии (в МПа).

Производство

Цемент получают тонким измельчением клинкера и гипса. Клинкер — продукт равномерного обжига до спекания однородной сырьевой смеси, состоящей из известняка и глины определённого состава, обеспечивающего преобладание силикатов кальция.

При измельчении клинкера вводят добавки: гипс СaSO4∙2H2O для регулирования сроков схватывания, до 15 % активных минеральных добавок (пиритные огарки, колошниковую пыль, бокситы, пески, опоки, трепелы) для улучшения некоторых свойств и снижения стоимости цемента.

Обжиг сырьевой смеси проводится при температуре 1470°C в течение 2-4 часов в длинных вращающихся печах (3,6х127 м, 4×150 м и 4,5х170 м) с внутренними теплообменными устройствами, для упрощения синтеза необходимых минералов цементного клинкера. В обжигаемом материале происходят сложные физико-химические процессы. Вращающуюся печь условно можно поделить на зоны:

  • подогрева (200…650 °C — выгорают органические примеси и начинаются процессы дегидратации и разложения глинистого компонента). Например, разложение каолинита происходит по следующей формуле: Al2O3∙2SiO2∙2H2O → Al2O3∙2SiO2 + 2H2O; далее при температурах 600…1000 °C происходит распад алюмосиликатов на оксиды и метапродукты.
  • декарбонизации (900…1200 °C) происходит декарбонизация известнякового компонента: СаСО3 → СаО + СО2, одновременно продолжается распад глинистых минералов на оксиды. В результате взаимодействия основных (СаО, MgO) и кислотных оксидов (Al2O3, SiO2) в этой же зоне начинаются процессы твердофазового синтеза новых соединений (СаО∙ Al2O3 — сокращённая запись СА, который при более высоких температурах реагирует с СаО и в конце жидкофазового синтеза образуется С3А), протекающих ступенчато;
  • экзотермических реакций (1200…1350 °C) завершется процесс твёрдофазового спекания материалов, здесь полностью завершается процесс образования таких минералов как С3А, С4АF (F — Fe2O3) и C2S (S — SiO2) — 3 из 4 основных минералов клинкера;
  • спекания (1300→1470→1300 °C) частичное плавление материала, в расплав переходят клинкерные минералы кроме C2S, который взаимодействуя с оставшимся в расплаве СаО образует минерал АЛИТ (С3S);
  • охлаждения (1300…1000 °C) температура понижается медленно. Часть жидкой фазы кристаллизуется с выделением кристаллов клинкерных минералов, а часть застывает в виде стекла.

Мировое производство цемента

В 2002 году мировое производство цемента достигло 1,8 млрд. т. В тройку крупнейших производителей вошли Китай (704 млн. тонн), Индия (100 млн. тонн), и США (91 млн. тонн).

Цена на цемент на европейских биржах составляет около 100$ за тонну. Цены на цемент в Китае составляют около 40$ за тонну. Большинство биржевых сделок с цементом в России на 2010 год осуществляется на Московской Фондовой Бирже.

Источники

Райхель В., Конрад Д. Бетон: В 2-х ч. Ч. 1. Свойства. Проектирование. Испытание. — М.: М.: Стройиздат, 1979. С. 33.Пер. с нем./Под ред. В. Б. Ратинова.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector