Kts23.ru

АЗС оборудование
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронное строение атома. Расположение структурных элементов в таблице Менделеева

Электронное строение атома. Расположение структурных элементов в таблице Менделеева

Технологическая схема производства цемента по сухому способу: 1— экскаватор. 2 — самоходкая дробилка, 3 — штабелеукладчик, 4 — роторная машина, 5 — кран-перегружатель, 6 — вагоноопрокидыватель, 7—приемные бункера сырья, 8 —дозирующее и транспортирующее устройство. 9 — мельница предварительного измельчения «Аэрофол». 10 — сепаратор, 11 — трубная мельница. 12

питатель-дозатор, 39 — дробилка, 40 —сушильная установка, 41 — дымосос, 42 — вентилятор, 43 — весовой дозатор. 44 —кои-веяер. 45— трубная мелышца, 46 — элеватор, 47 —сепаратор. 48 — рукавный фильтр, 49-вагон-цемеитовоз, 50 — автодемстговсз, 51 —весы, 52—цементный силос.

схема сухо.jpg

Комбинированный способ производства. При комбинированном способе производства сырьевая смесь в виде шлама, полученного по мокрому способу производства, подвергается обезвоживанию и грануляции, а затем обжигается в печах, работающих по сухому способу.

Основные технологические операции и последовательность их выполнения при комбинированном способе производства портланд­цемента следующие.

Выходящий из сырьевой мельницы шлам влажностью 35—40% после его корректирования поступает в вакуум-фильтр или пресс-фильтр, где он обезвоживается до влажности 16—20%. Образую­щийся при этом «сухарь» смешивается затем с пылью, уловленной электрофильтрами из дымовых газов печи; добавка пыли предот­вращает слипание кусков «сухаря» и приводит к уменьшению влажности смеси до 12—14%. Приготовленная таким образом смесь поступает на обжиг, который осуществляется во вращаю­щихся печах.

Все остальные операции производства портландцемента по ком­бинированному способу не отличаются от соответствующих опера­ций при мокром способе производства.
55) Химико-минералогический состав портландцементного клинкера
Портландцемент – гидравлическое вяжущее, получаемое тонким измельчением портландцементного клинкера и небольшого количества гипса (1,5. 3 %). Клинкер получают обжигом до спекания сырьевой смеси, обеспечивающей в портландцементе преобладание силикатов кальция. К клинкеру для замедления схватывания цемента добавляют гипс. Для улучшения некоторых свойств и снижения стоимости портландцемента допускается введение минеральных добавок.

Производство. Основные операции при получении портландцемента: приготовление сырьевой смеси, обжиг ее до получения цементного клинкера и помол его совместно с добавками. Клинкер имеет следующий химический состав(%): СаО – 62. 68, SiO2 – 18. 26, А12О3 – 4. 9, Fе2О3 – 2. 6. Чаще используют известняк и глину в соотношении 3:1. В сырьевую смесь вводят корректирующие добавки и промышленные отходы, обеспечивающие требуемый состав клинкера.

Двухкальциевый силикат (белит), C 2 S

Трехкальциевый алюминат, C 3 A

Примечание: В скобках сокращенное обозначение клинкерных минералов.
Портландцементный клинкер (на 60…80%) состоит из силикатов кальция, из-за чего портландцемент называют силикатным цементом.

Для получения портландцемента клинкер размалывают в трубных или шаровых мельницах с гипсом и другими добавками. Свойства портландцемента зависят от его минерального состава и тонкости помола клинкера. При взаимодействии с влагой воздуха активность портландцемента падает, поэтому его предохраняют от действия влаги. Портландцемент хранят в силосах, а транспортируют в специальных вагонах, автомобилях-цементовозах.

56) свойства клинкерных минералов и влияние на свойства вяжущего
Клинкер. Качество клинкера зависит от его химического и минералогических составов. Для производства портландцементного клинкера применяют известняк и глину. Известняк в основном состоит из двух оксидов: СаО и СO2, а глина — из различных минералов, содержащих в основном три оксида: SiO2, Аl2О3 и Fe2O3. В процессе обжига сырьевой смеси удаляется СO2, а оставшиеся четыре оксида: СаО, SiO2, Аl2О3 и Fe2O3 — образуют клинкерные минералы. Содержание оксидов в цементе примерно следующее: 64. 67% СаО, 21. 24% SiO2, 4. 8% Аl2O3, 2. 4% Fe2O3.
Кроме указанных основных оксидов в портландцементном клинкере могут присутствовать MgO и щелочные оксиды К2О и Na2O, снижающие качество цемента. Оксид магния, обожженный при температуре около 1500°С, при взаимодействии с водой очень медленно гасится и вызывает появление трещин в уже затвердевшем растворе или бетоне, поэтому содержание оксида магния в портландцементе не должно быть более 5%. Наличие в цементе щелочных оксидов выше 1 % может вызвать разрушение отвердевшего бетона на таком цементе.
Указанные выше основные оксиды находятся в клинкере не в свободном виде, а образуют при обжиге четыре основных минерала, относительное содержание которых в портландцементе следующее (%): трехкальциевый силикат 3CaO•SiO2 (алит) — 45. 60; двухкальциевый силикат 2CaO•SiO2 (белит)— 20. 35; трехкальциевый алюминат 3СaO•Аl2O3 — 4. 12; четырехкальциевый алюмоферрит 4CaO•Al2O3•Fe2O3—10. 18. Сокращенное обозначение этих минералов следующее: C3S, C2S, С3А и C4AF.
• Алит (C3S) — основной минерал клинкера, быстро твердеет и практически определяет скорость твердения и нарастания прочности портландцемента. Он представляет собой твердый раствор трехкальциевого силиката и небольшого количества (2. 4%) MgO, Аl2O3, Р2О5, Cr2О3 и других примесей, которые могут существенно влиять на структуру и свойства портландцемента.
• Белит (β-C2S) — второй по важности и содержанию силикатный минерал клинкера, медленно твердеет и достигает высокой прочности при длительном твердении. Белит в клинкере представляет собой твердый раствор двухкальциевого силиката (β-C2S) и небольшого количества (1. 3%) Аl2O3, Fe2O3, MgO, Сr2O3 и др. В связи с тем что белит при медленном охлаждении клинкера теряет вяжущие свойства, переходя из β-C2S в γ-C2S, это явление предотвращается быстрым охлаждением клинкера.
Содержание минералов-силикатов в клинкере в сумме составляет около 75%, поэтому гидратация алита и белита в основном определяет свойства портландцемента. Оставшиеся 25% объема клинкера между кристаллами алита и белита заполнены кристаллами С3А, C4AF, стекла и второстепенными минералами.
• Трехкальциевый алюминат (С3А) при благоприятных условиях обжига образуется в виде кубических кристаллов. Он очень быстро гидратирует и твердеет. Продукты гидратации имеют пористую структуру и низкую прочность. Кроме того, С3А является причиной сульфатной коррозии цемента, поэтому его содержание в сульфатостойком цементе ограничено 5%.
• Четырехкальциевый алюмоферрит (C4AF) — алюмоферритная фаза промежуточного вещества клинкера, представляет собой твердый раствор алюмоферритов кальция разного состава, обычно ее состав близок к 4СаО•Аl2О3•Fe2О3. По скорости гидратации этот минерал занимает как бы промежуточное положение между алитом и белитом и не оказывает определяющего значения на скорость твердения и тепловыделение портландцемента.
Клинкерное стекло присутствует в промежуточном веществе в количестве 5. 15%, которое в основном состоит из СаО, Аl2О3, MgO, К2О и Na2O.
При правильно рассчитанной и тщательно подготовленной и обожженной сырьевой смеси клинкер не должен содержать свободного оксида кальция СаО, так как пережженная при температуре около 1500°С известь, так же как и магнезия MgO, очень медленно гасится, увеличиваясь в объеме, что может привести к растрескиванию уже затвердевшего бетона.
57) основные свойства портландцементов
Твердение. При смешивании с водой частицы портландцемента начинают растворяться, причем одновременно может происходить гидролиз (разложение водой) и гидратация (присоединение воды) продуктов растворения с образованием гидратных соединений. По этой схеме взаимодействуют с водой главные компоненты клинкера алит С3S и белит С2S:
2(3СаО · SiO2) + 6Н2O → ЗCаО · SiO2 · 3Н2О + 3Са(ОН)2

Читайте так же:
Цементный клей для полистирола

2(2СаО· SiO2) + 4Н2О → 3СаО · SiO2 · 3Н2О + Са(ОН)2
Трехкальциевый силикат С3S взаимодействует с водой намного активнее, чем С2S; при взаимодействии силикатов кальция с водой выделяется растворимый в воде компонент Са(ОН)2 –создающий щелочную реакцию в твердеющем цементе; С3S выделяет Са(ОН)2 в 3 раза больше, чем С2S; общее количество Са(ОН)2 достигает 15 % от массы цементного камня.

Алюминат кальция С3А подвергается только гидратации. Этот процесс идет очень быстро с образованием крупных кристаллов 3СаО · А12О3 + 6Н2О → 3СаО · А12О3 · 6Н2О

Добавка гипса, вводимая при помоле клинкера, замедляет схватывание цемента на несколько часов из-за образования эттрингита 3СаО·А12О3·3СаSО4 · (31–33)Н2О, обладающего развернутой поверхностью и экранирования частиц минерала С3А.

Четырехкальциевый алюмоферрит С4АF взаимодействует с водой медленнее, чем С3А, образуя гидроалюминат и гидроферрит кальция.
4CaO · Al2O3 · Fe2O3 + 12 H2O → 3CaO · Al2O3 · 6H2O + CaO · Fe2O3 · 6H2O
Основной продукт твердения портландцемента – гидросиликаты кальция – практически нерастворимы в воде. Они выпадают из раствора сначала в виде геля Гель гидросиликатов кальция со временем кристаллизуется. Остальные продукты взаимодействия клинкера с водой также участвуют в формировании структуры цементного камня и, также влияют на его свойства. Процесс гидратации зерен портландцемента из-за малой их растворимости растягивается на длительное время. Процесс может протекать при наличие воды в твердеющем материале. Качество цемента принято оценивать по прочности, набираемой им через 28 суток твердения.
58) цементы с пав и наполненные цементы. Их применение.

Для «горячих» скважин: начало схватывания не ранее 1ч 45мин, конец схватывания не позднее 4ч 30мин.

Глиноземистый цемент – быстротвердеющее и высокопрочное гидравлическое вяжущее вещество, получаемое путем тонкого измельчения клинкера, содержащего преимущественно низкоосновные алюминаты кальция.

Однокальциевый алюминат СаО•Al2O3 определят быстрое твердение и др. свойства. В нем содержатся и другие алюминаты кальция, например, 2СаО•Al2O3. Цемент изготовляют из известняка СаСО3 и бокситов содержащих глинозем Al2O3•nH2O. Получают этот цемент путем плавки в доменной печи бокситовой руды и железного лома. При этом доменная печь одновременно выдает чугун и шлак, представляющий собой клинкер глиноземистого цемента.

Глиноземистый цемент марок 400, 500 и 600 обладают необычно быстрым твердением через трое суток и нормальными сроками схватывания. Начало схватывания не ранее 30мин. и конец схватывания не позднее 12 часов, тепловыделение при твердении в 1,5 раза больше, чем у портландцемента. В продуктах гидратации глиноземистого цемента не содержится гидроксида кальция, Са(ОН)2 и трехкальциевого шестиводного гидроалюмината (С3•А•Н6), если температура твердения не превышает 25оС, поэтому бетон на глинозёмистом цементе более стоек по сравнению с портландцементом против выщелачивания Са(ОН)2, а также в растворах сульфата кальция и магния (в морской воде). Однако затвердевший глиноземистый цемент разрушается в растворах кислот и щелочей, поэтому глиноземистый цемент нельзя смешивать с портландцементом и известью.

С учетом специфических свойств и высокой стоимостью глиноземистый цемент предназначается для получения быстротвердеющих, а также жаростойких бетонов и растворов и расширяющихся цементов.

Расширяющиеся и безусадочные цементы.

Состав цемента дает возможность регулировать количество и скорость образования кристаллов гидросульфоалюмината кальция (3СаО•Al2O3•3CaSO4•31H2O) и избежать появления больших напряжений, вызывающих растрескивание затвердевшего цементного камня.

Расширяющийся портландцемент (РПЦ) получают совместным тонким измельчением в мас., % портландцементного клинкера – 58…63, глиноземистого шлака или клинкера – 5…7, гипса – 7…10, доменного граншлака или другой активной минеральной добавки – 23…28. РПЦ отличается быстрым твердением в условиях кратковременного пропаривания, высокой плотностью и водонепроницаемостью цементного камня и способностью расширяться при постоянном увлажнении в течение первых трех суток.

54) Основы производства портландцемента

Процесс производства портландцемента складывается в основ­ном из следующих основных операций: добычи сырьевых матери­алов; приготовления сырьевой смеси, состоящей из дробления, по­мола и усреднения ее состава; обжига сырьевой смеси (получение клинкера); помола клинкера в тонкий порошок.

В зависимости от вида подготовки сырья к обжигу различают мокрый, сухой и комбинированный способы производств портландцементного клинкера. При мокром способе производства из­мельчение сырьевых материалов, их перемешивание, усреднение и корректирование сырьевом смеси осуществляются в присутствии определенного количества воды, а при сухом способе все перечис­ленные операции выполняются с сухими материалами.

При комбинированном способе сырьевую смесь приготовляют по мокрому способу, затем ее максимально обезвоживают (фильтруют) на спе­циальных установках и в виде полусухой массы обжигают в печи. Каждый из перечисленных способов имеет свои достоинства и не­достатки.

Способ производства портландцемента выбирают в зависимости от технологических и технико-экономических факторов: свойств сырья, его однородности и влажности, наличия достаточной топ­ливной базы и др.

Мокрый способ производства. При мокром способе производст­ва сырьевые материалы измельчают и сырьевую смесь смешивают с водой. Получаемая сметанообразная масса — сырьевой шлам — содержит 32—45% воды.

В зависимости от физических свойств исходных сырьевых ма­териалов и других факторов при получении портландцемента по мокрому способу применяют разные схемы производства (рис. 1) отличающиеся одна от другой способом приготовления сырьевой смеси.

На цементных заводах, работающих по мокрому способу, в ка­честве сырьевых материалов для производства портландцементно-го клинкера часто используют мягкий глинистый и твердый извест­няковый компоненты. В этом случае технологическая схема произ­водства цемента, в которой приведены основные технологические переделы без указания дозировочных и транспортных устройств и другого вспомогательного оборудования, выглядит следующим об­разом .

Читайте так же:
Пропорции бетона цемент м500 пгс

Начальная технологическая операция получения клинкера — измельчение сырьевых материалов. При использовании в качестве известкового компонента мела его измельчают в болтушках или в мельнице самоизмельчення. Если применяют твердый известняк, то его дробят в одну-две стадии в щековых дробилках. Глиняный шлам, полученный в болтушках или других агрегатах, направляют в сырьевую мельницу, куда подается для измельчения и известняк. В мельницу известняк и глиняный шлам подают в определенном соотношении, соответствующем требуемому химическому составу клинкера. Чтобы получить сырьевой шлам заданного химического состава, его корректируют в бассейнах или в потоке.

1-экскаватор, 2 — автосамосвал, 3 — приемная воронка, 4 -пластинчатый питатель. 5-щековая дробилка, 6- молотковая дробилка 7 — лен­точный конвейер, 8-ленточный магистральный конвейер, 9-роторный экскаватор, 10 — мельница 11

шламотный насос, 12- вертикальный шламбассейн. 13 — магистральный шламопровод, 14 -бункер, 15 — весовой дозатор,16-стержневая мельница 17-шаровая мельница 18 — горизонталыше шламбассейнм, 19— компрессорная, 21 — вращающаяся печь, 22-колосниковый холодилбник 23 вентилятор острого дутья. 24-вентилтор общего дутья, 25 — скруббер. 26 – электрофильтр 27-дымосос 28-труба для выброса газов» 29-винтовой конвейер для транспортирования пыли. 30-пнеамовинтовой насос. 31-ковшовый конвеер 32- бункерное приемное устройство для разгрузки добавок, 33 -дробилка, 34-сушилка кипящего слоя. 35 — топка, 36 — Циклон, 37 –силосы 38- ленточный конвейер, 39— трубная мельница. 40 —элеватор. 41 —сепаратор с выносными циклонами, 42 —рукавный фильтр, 43 — вентилятор. 44—пнев-мокамерный насос,45 — силос для цемента, 46 — вагов-цементовш. 47 — автоцемемтовоз

Выходящий из мельниц сырьевой шлам в виде сметанообразной массы насосами подают в расходный бачок в печной цех на об­жиг. Из бачка шлам равномерно сливается во вращающуюся печь. При мокром способе производства для обжига клинкера использу­ют длинные вращающиеся печи со встроенными теплообменными устройствами.

Из печи клинкер поступает в холодильник, где охлаждается холодным воздухом. Охлажденный клинкер отправляют на склад. В ряде случаев клинкер из холодильников направляют непосред­ственно на помол в цементные мельницы. Перед помолом клинкер дробят. Дробление клинкера производится совместно с гипсом, гид­равлическими и другими добавками.

Из мельницы цемент транспортируют на склад силосного типа (цементные силосы). Отгружают цемент потребителю либо в таре (бумажных мешках по 50 кг), либо навалом в автоцементовозах или в специальных железнодорожных вагонах.

Сухой способ производства. При сухом способе производства портландцемента выбор схемы зависит от физических и химиче­ских свойств сырья.

Схема производства портландцемента по сухому способу во вращающихся печах при использовании в качестве сырья известня­ка и глины приведена на рис. 2. Производство портландцементно-го клинкера в этом случае складывается из следующих операций.

После выхода из дробилки известняк и глину высушивают до влажности примерно 1%, после чего измельчают в сырьевую му­ку. Помол и сушку сырьевой смеси целесообразно вести одновре­менно в одном аппарате — сепараторной мельнице. Этот способ более эффективен и применяется на большинстве новых заводов, ра­ботающих по сухому способу.

Сырьевую муку заданного химического состава получают пу­тем дозирования сырьевых компонентов в мельницу с последую­щим усреднением и корректированием сырьевой шихты в специаль­ных смесительных силосах, куда дополнительно подается сырьевая мука с заведомо низким или высоким титром (содержанием СаСОз).

Затем подготовленная сырьевая смесь поступает в систему цик­лонных теплообменников, состоящую из нескольких ступеней цик­лонов. Время пребывания смеси в циклонных теплообменниках не превышает 25—30 с. Из циклонов материал подается в печь, отку­да клинкер пересыпается в холодильник. После охлаждения клин­кер направляется на склад. Другие технологические операции при сухом способе производства — подготовка гидравлических добавок и гипса, помол цемен­та, его хранение и отправка потребителю — такие же, как и при мокром способе.

Рис. 2. Технологическая схема производства цемента по сухому способу: 1— экскаватор. 2 — самоходкая дробилка, 3 — штабелеукладчик, 4 — роторная машина, 5 — кран-перегружатель, 6 — вагоноопрокидыватель, 7—приемные бункера сырья, 8 —дозирующее и транспортирующее устройство. 9 — мельница предварительного измельчения «Аэрофол». 10 — сепаратор, 11 — трубная мельница. 12

топка. 13 — циклон, 14 — мельничный вентилятор, 15 — кондиционер, 16 — электрофильтр. 17 — аспнирационный вентилятор, 1В — дымовая труба, 19— механизм уборки пшш. 20 — пневмокамерные насосы, 11- корректирующие снлосы, 22—рас­ходные силосы, 23 —расходный бункер постоянного уровня, 24 —весовой дозатор (расходомер). 25 — пневмоподъемник. 26 —рукавный фильтр, г/ — циклонные теплообменники, 28 — вращающаяся печь. 23 — колосниковый холодильник, 30 — вентилятор острого дутья, 31 — вентилятор двоякого прососа, 32 — вентилятор общего дутья, 33 — дробилка клинкере, 34— конвейер клинкере, 35 — силосы, 36 — регулировочный шиб«р. 57 — прием­ный бункер, Зе

питатель-дозатор, 39 — дробилка, 40 —сушильная установка, 41 — дымосос, 42 — вентилятор, 43 — весовой дозатор. 44 —кои-веяер. 45— трубная мелышца, 46 — элеватор, 47 —сепаратор. 48 — рукавный фильтр, 49-вагон-цемеитовоз, 50 — автодемстговсз, 51 —весы, 52—цементный силос.

Комбинированный способ производства. При комбинированном способе производства сырьевая смесь в виде шлама, полученного по мокрому способу производства, подвергается обезвоживанию и грануляции, а затем обжигается в печах, работающих по сухому способу.

Основные технологические операции и последовательность их выполнения при комбинированном способе производства портланд­цемента следующие.

Выходящий из сырьевой мельницы шлам влажностью 35—40% после его корректирования поступает в вакуум-фильтр или пресс-фильтр, где он обезвоживается до влажности 16—20%. Образую­щийся при этом «сухарь» смешивается затем с пылью, уловленной электрофильтрами из дымовых газов печи; добавка пыли предот­вращает слипание кусков «сухаря» и приводит к уменьшению влажности смеси до 12—14%. Приготовленная таким образом смесь поступает на обжиг, который осуществляется во вращаю­щихся печах.

Читайте так же:
Плиточный клей использование вместо цемента

Все остальные операции производства портландцемента по ком­бинированному способу не отличаются от соответствующих опера­ций при мокром способе производства.

Производство шлакового цемента

Производство шлакового цемента включает ряд технологических операций, которые можно разделить на две основные группы. Первая — это операции по производству клинкера, вторая — измельчение клинкера совместно с гипсом, а в ряде случаев и с другими добавками, т.е. приготовление портландшлакового цемента. Получение клинкера — наиболее сложный и энергоемкий процесс, требующий больших капитальных и эксплуатационных затрат. Доля клинкера в стоимости портландшлакового цемента достигает 70-80%. Производство клинкера состоит из добычи сырьевых материалов, дробления, помола и смешивания их в определенном соотношении, обжига сырьевой смеси и магазинирования клинкера.

Комплекс операций по получению из клинкера портландшлакового цемента включает следующие технологические процессы: дробление клинкера, сушку минеральных добавок, дробление гипсового камня, тонкое измельчение клинкера совместно с активными минеральными добавками и гипсом, складирование, упаковку и от правку шлакового цемента потребителю.

Даже в пределах одного месторождения химико-минералогический состав сырья меняется в широких пределах. Поэтому получение сырьевой смеси постоянного состава — сложная задача. С другой стороны, перерабатываемое цементной промышленностью сырье отличается не только составом, но и физико-техническими свойствами (влажностью, прочностью и т. д.). Для каждого вида сырья должен быть выбран такой способ подготовки, который обеспечивал бы тонкое измельчение и равномерное перемешивание компонентов шихты с минимальными энергетическими затратами. Это послужило причиной появления в цементной промышленности трех способов производства, отличающихся технологическими приемами подготовки сырьевых смесей: мокрого, сухого и комбинированного.

При мокром способе тонкое измельчение сырьевой смеси производят в водной среде с получением шихты в виде водной суспензии шлама влажностью 30-50%. При сухом способе сырьевую шихту готовят в виде тонкоизмельченного сухого порошка, поэтому перед помолом или в процессе его сырьевые материалы высушивают.

Комбинированный способ может базироваться как на мокром, так и на сухом способе приготовления шихты. В первом случае сырьевую смесь готовят по мокрому способу в виде шлама, а затем обезвоживают на фильтрах до влажности 16-18 % и подают на обжиг в печи в виде полусухой массы. Во втором варианте сырьевую смесь готовят по сухому способу, а затем гранулируют с добавкой 10-14 % воды и подают на обжиг в виде гранул диаметром 10-15 мм. Каждый способ производства может быть реализован в виде нескольких технологических схем, отличающихся как последовательностью операций, так и видом используемого оборудования. Выбор конкретной технологической схемы определяется свойствами перерабатываемого сырья (твердостью, однородностью, влажностью).

Мокрый способ производства шлакового цемента.

На отечественных цементных предприятиях при подготовке сырьевой смеси по мокрому способу в большинстве случаев используют твердый карбонатный (известняк) и мягкий глинистый (глина) компоненты.

Принципиальная технологическая схема получения портландшлакового цемента.

Известняк как более твердый материал предварительно подвергается дроблению, а пластичная глина измельчается в присутствии воды в специальных аппаратах (болтушках или мельницах-мешалках). Окончательное тонкое измельчение с получением однородной смеси известняка, глиняного шлама и корректирующих добавок происходит в шаровых трубных мельницах. Хотя компоненты дозируют в мельницы в заданном соотношении, из-за колебаний их химико-минералогических характеристик не удается получить в мельнице шлам состава, отвечающего установленным параметрам. Поэтому необходима специальная технологическая операция по корректировке его состава. После проверки соответствия состава шлама заданным показателям его подают на обжиг во вращающуюся печь, где завершаются химические реакции, приводящие к получению клинкера. Затем клинкер охлаждается в холодильнике и поступает на склад, где также хранятся гипс и активные минеральные добавки. Эти компоненты предварительно должны быть подготовлены к помолу. Активные минеральные добавки высушивают до влажности не более 1%, гипс подвергают дроблению. Совместный тонкий размол клинкера, гипса и активных минеральных добавок в шаровых трубных мельницах обеспечивает получение шлакового цемента высокого качества. Из мельниц цемент поступает в склады силосного типа. Отгружают его либо навалом (в автомобильных и железнодорожных цементовозах), либо упакованным в многослойные бумажные мешки.

При приготовлении шлама из двух мягких (мела и глины) и двух твердых компонентов (известняка и глинистого мергеля) последовательность основных технологических операций не меняется. Однако особенности свойств измельченного сырья и стремление к выбору наименее энергоемких технических решений обусловливают существенные отличия способов измельчения компонентов. При использовании двух мягких компонентов принципиальная технологическая схема будет следующей.

Такая технологическая схема позволяет эффективно использовать способность мягкого сырья распускаться в воде. Применение мощного оборудования для предварительного измельчения сырья (например, мельниц «Гидрофол») позволяет отказаться от его дробления.

Однако на стадии предварительного измельчения часть сырья остается недоизмельченной, и получение шлама также должно завершаться в шаровой трубной мельнице.

При использовании двух твердых компонентов принципиальная технологическая схема приобретает новый вид.

В данной технологической схеме повышенная твердость глинистого сырья обусловливает необходимость его предварительного дробления. Тонкое измельчение всех компонентов происходит в одну стадию в шаровой мельнице. Очевидно, что этот вариант технологической схемы связан с большими трудностями получения однородной тонкодисперсной смеси и большим расходом энергии.

В водной среде облегчается измельчение материалов и улучшается их перемешивание. В результате снижается расход электроэнергии (при мягком сырье экономия может достигать 36 МДж/т сырья) и получается более однородная шихта, что, в конечном счете, приводит к росту марки шлакового цемента. Кроме того, при мокром способе упрощается транспортировка шлама и улучшаются санитарно-гигиенические условия труда. Сравнительная простота мокрого способа и возможность получения высокомарочной продукции на сырье пониженного качества обусловили его широкое распространение в цементной промышленности нашей страны. В настоящее время этим способом выпускается около 85% клинкера. В то же время введение в шлам значительного количества воды (30-50% массы шлама) обусловливает резкое повышение расхода теплоты на ее испарение. В результате расход теплоты при мокром способе (5,86 МДж/кг) на 30-40% выше, чем при сухом способе. Кроме того, при мокром способе возрастают габариты и соответственно металлоемкость печей.

Сухой способ производства шлакового цемента.

Последовательность технологических операций производства портландшлакового цемента сухим способом такая же, как и при мокром, однако при подготовке сырьевых смесей имеются существенные отличия, зависящие от влажности и твердости сырья. При переработке сырья повышенной твердости и умеренной влажности принципиальная технологическая схема имеет вид.

Читайте так же:
Цементный раствор с фери

Высокая твердость измельчаемых материалов требует предварительного их дробления. Тонкое измельчение материалов может производиться при влажности не более 1%. В природе такое сырье практически не встречается, поэтому обязательная операция сухого способа производства — сушка. Желательно совмещать ее с размолом сырьевых компонентов. На большинстве новых предприятий, работающих по сухому способу производства, в шаровой трубной мельнице совмещаются процессы сушки, тонкого измельчения и перемешивания всех компонентов сырьевой смеси. Из мельницы сырьевая смесь выходит в виде тонкодисперсного порошка — сырьевой муки. В железобетонных силосах производятся корректировка ее состава до заданных параметров и гомогенизация перемешиванием сжатым воздухом. Готовая сырьевая смесь поступает на обжиг. Вращающиеся печи сухого способа производства оборудованы запечными теплообменными устройствами (циклонными теплообменниками). В них за несколько десятков секунд сырьевая смесь нагревается до 700-800°С, дегидратируется и частично декарбонизируется. Завершается обжиг клинкера во вращающейся печи.

Необходимость экономии расхода топлива вынуждает перерабатывать по сухому способу материалы с все более высокой влажностью. Технологическая схема производства портландшлакового цемента из такого сырья выглядит следующим образом.

Предварительное измельчение материалов повышенной влажности при сухом способе целесообразно осуществлять в мельницах самоизмельчения типа «Аэрофол», позволяющих перерабатывать сырье с влажностью до 25%. Однако полностью высушиться сырье при этом не успевает и в шаровой мельнице одновременно с доизмельчением крупных частиц и получением однородной сырьевой смеси производится ее досушка.

Приготовление сырьевой смеси в виде порошка усложняет технологическую схему. Увеличивается число энергоемкого оборудования, более «капризного» при эксплуатации.

Сложнее при сухом способе обеспечить санитарные условия и охрану окружающей среды. Но решающим его преимуществом является снижение расхода теплоты на обжиг клинкера до 3,44 МДж/кг. Кроме того, на 35-40% уменьшается объем печных газов, что соответственно снижает стоимость обеспыливания и дает больше возможностей по использованию теплоты отходящих газов для сушки сырья.

Важнейшее преимущество сухого способа более высокий съем клинкера с 1 м³ печного агрегата. Это позволяет проектировать и строить печи по сухому способу в 23 раза более мощные, чем по мокрому. В целом по технико-экономическим показателям сухой способ превосходит мокрый. При использовании мощных печей он обеспечивает снижение удельного расхода топлива на обжиг клинкера примерно вдвое, рост годовой выработки на одного рабочего примерно на 40%, уменьшение себестоимости продукции на 10% и сокращение капиталовложений при строительстве предприятий на 50%. Это обусловило интенсивное его распространение в мировой цементной промышленности.

Однако надо учитывать, что возможности применения сухого способа ограничены влажностью перерабатываемого сырья. Переработка сырья с влажностью более 20-25% по сухому способу связана с высокими расходами теплоты на сушку, и этот способ становится неэкономичным.

Комбинированный способ производства шлакового цемента.

Наиболее перспективная технологическая схема комбинированного способа производства.

Такая схема позволяет использовать преимущества подготовки сырьевой смеси по мокрому способу и одновременно снизить расход теплоты на обжиг. При этом почти на 30% уменьшается расход топлива и примерно на 10% капитальные затраты по сравнению с мокрым способом, но на 15-20 % повышается расход электроэнергии. Такая схема наиболее реальный путь снижения расхода топлива предприятиями, работающими на сырье высокой влажности. При переводе с мокрого способа производства на комбинированный наиболее сложным является создание и внедрение надежных и высокопроизводительных аппаратов для фильтрации шлама.

Принципиальное отличие этой схемы от схемы сухого способа — это появление дополнительной технологической операции грануляции сырьевой смеси, осуществляемой с добавкой 10-14% воды в специальных аппаратах — тарельчатых грануляторах. Гранулированную смесь с размером зерен 10-15 мм обжигают в шахтных печах или печах с конвейерными кальцинаторами. Этот способ требует несколько большего, чем сухой, расхода теплоты, необходимой на испарение введенной при грануляции воды; не всякая сырьевая смесь способна давать прочные гранулы, не разрушающиеся при обжиге; сложна конструкция используемых печных агрегатов. В то же время обжиг гранулированного сырья позволяет стабилизировать режим работы печей, улучшить теплообмен, повысить качество клинкера.

Таким образом, каждый способ производства портландшлакового цемента имеет свои достоинства и недостатки. Преобладание того или иного способа в разных странах определяется технико-экономическими особенностями развития цементной промышленности.

Москалев Александр

Смесители сухих смесей, оборудование для производства ССС,
Станции растаривания, Пневмокамерные и пневмошлюзовые насосы, Телескопические загрузчики, Весовые бункера-дозаторы
Тел.: +7 909 261-13-29
info@stroymehanika.ru
Skype: A.Moskalev_SM

Лабазин Илья

Вопросы дилерского сотрудничества, Фасовочные станции, Станции затаривания, Дозаторы малых добавок
Тел.: +7 962 272-62-77
info@stroymehanika.ru
Skype: stroymehanika71

Лозовский Михаил

Ленточные конвейеры и элеваторы, Винтовые конвейеры АРМАТА, Силосы цемента, Дробильно-сортировочное и помольное оборудование, Виброгрохоты и вибросита
Тел.: +7 960 616-30-22
info@stroymehanika.ru

Практические рекомендации по модернизации дозировочно-смесительного отделения

В настоящее время на многих бетоносмесительных установках (БСУ) технологическое и дозирующее оборудование имеет большой физический износ, а автоматизированные системы управления технологическим процессом производства бетона либо морально устарели, либо вовсе отсутствуют. Создавшаяся ситуация не позволяет обеспечить не только номинальную производительность бетоносмесительной установки, но и необходимое качество бетонной смеси, при этом требования, предъявляемые к качеству бетонной смеси, постоянно ужесточаются.

Эту проблему можно решить путем модернизации одного из основных узлов бетоносмесительной установки — дозировочно-смесительного отделения (ДСО). Модернизация проводится в сжатые сроки, поэтапно, с минимально возможным временем остановки основного производства и, как правило, не затрагивает строительную часть.

Для модернизации дозаторно-смесительного отделения бетоносмесительной установки (ДСО БСУ) ЗАО «ВИК «ТЕНЗО-М» предлагает:

Структурная схема Программно технического комплекса «ТЕНЗО-БЕТОН»

Рис.1. Структурная схема Программно технического комплекса «ТЕНЗО-БЕТОН»

Автоматизированную систему управления технологическим процессом производства бетона АСУ ТП на базе Программно-технического комплекса (ПТК) «ТЕНЗО-БЕТОН» (рис.1).

Технологическое оборудование, системы пневмоавтоматики силовое электрооборудование, комплектующие.

Основные функции АСУ ТП:

визуализация технологического процесса;

Читайте так же:
Рецепт цементного раствора м150

автоматический контроль состояния всех исполнительных механизмов с выдачей предупредительной, аварийной сигнализации и диагностических сообщений;

автоматическая корректировка количества дозируемой по рецепту воды и инертных компонентов с учетом их влажности;

стабилизация водоцементного отношения при наличии СВЧ-влагомера (опция);

контроль подвижности и гомогенности бетонной смеси;

ведение протоколов работы, создание архива за отчетный период, вывод отчетов о расходе материалов и произведенной продукции, как в автоматическом, так и в ручном режиме.

АСУ ТП поддерживает два режима работы: автоматический и наладочный.

Особенности автоматического режима бетоносмесительной установки заключаются в том, что оператору достаточно лишь выбирает рецептуру бетонной смеси и запустить процесс, а дальше весь процесс от дозирования и смешивания, до выгрузки бетонной смеси в автомобильный бетоносмеситель осуществляется без участия оператора. Оператор лишь следит за ходом технологического процесса на экране монитора. Учет сырья и готовой продукции производится также без участия оператора.

Ручной (наладочный) режим заключается в том, что оператор при помощи пульта управления осуществляет по этапам включение бетоносмесителя, дозирование компонентов бетонной смеси с использованием весовых терминалов, открытие шибера бетоносмесителя и выгрузку смеси в автомобильный бетоносмеситель. Особенностью ручного режима является то, что учет расхода сырья и выхода готовой продукции производится без участия оператора.

Помимо этого имеется возможность оптимизации временных параметров и циклограммы работы ДСО обслуживающим персоналом Заказчика (доступ под паролем).

Мы рекомендуем несколько вариантов модернизации ДСО БСУ на основе внедрения автоматизированной системы управления технологическим процессом (АСУ ТП) производства бетона:

с полной или частичной заменой дозирующего и технологического оборудования;

с установкой тензометрических весоизмерительных электронных устройств (ТВЭУ) и заменой исполнительных механизмов и датчиков положения;

с установкой тензометрических весоизмерительных электронных устройств (ТВЭУ), без замены исполнительных механизмов с установкой необходимых датчиков положения.

В качестве примера типовой модернизации рассмотрим основные этапы работ.

Функциональная схема автоматизации технологического процесса производства бетона

Рис. 2. Функциональная схема автоматизации технологического процесса производства бетона

Полная или частичная замена дозирующего оборудования; c установкой тензометрических весоизмерительных электронных устройств (ТВЭУ) с заменой или без замены исполнительных механизмов и датчиков положения и внедрением АСУ ТП производства бетона согласованной конфигурации с Заказчиком.

Уточнение технологической схемы производства бетона, разработка функциональной схемы АСУ ТП производства бетона (рис.2.).

Выбор и составление заказной спецификации необходимого оборудования.

Расчет бюджета и проведение обследование объекта и разрабатка технических решений по модернизации ДСО.

На основании проведенного обследования и анализа требований Заказчика к качеству продукции, выбор варианта модернизации с и согласование план-графика проведения работ.

Разработка объемно-планировочных решений размещения дозаторов, технологического оборудования и технического комплекса АСУ ТП.

Изготовление дозаторов и технического комплекса АСУ ТП.

Монтаж дозаторов и технического комплекса АСУ ТП.

Проведение пусконаладочных работ и консультации для персонала по эксплуатации.

Остановимся на некоторых особенностях дозаторов.

Дозаторы инертных материалов песка и щебня (рис.3.) имеют ряд особенностей. Дозирующие заслонки установлены на раме с возможностью перемещения таким образом, чтобы фланцы заслонок совпали с ответными фланцами конусов бункеров инертных материалов. Весовая емкость дозатора

с выпускной заслонкой подвешена на раме на 4-х S-образных датчиках с узлами встройки таким образом, чтобы весовую емкость можно было бы точно выставить по высоте и отрегулировать в горизонтальной плоскости. Проходное сечение заслонок может быть отрегулировано при помощи специальных упоров. Высокая надежность заслонок связана с использованием специальных подшипников и аппаратуры пневмоавтоматики высокого качества.

Дозатор инертных материалов

Рис3. Дозатор инертных материалов

Дозатор цемента с двумя шнековыми винтовыми питателями компании WAM (Италия, см. рис. 4). Весовая емкость с выпускной заслонкой опирается на три тензометрических датчика балочного типа. Шнековые винтовые питатели имеют универсальные поворачивающиеся входные патрубки, которые позволяют точно совместить выходной патрубок питателя с входным патрубком дозатора.

Дозатор цемента

Рис.4. Дозатор цемента

На рис. 5 показан блок дозатора воды и химических добавок. Такая конструкция блока позволяет достичь высокую точность дозирования жидких компонентов смеси.

Дозатор воды

Рис. 5. Дозатор воды

Автоматизированное рабочее место оператора (АРМ), пульт управления и силовой шкаф размещены в отдельном помещении (рис. 6). Оператор задает на компьютере АРМ задание по выбранному рецепту, а дальше все операции от загрузки компонентов в дозаторы до перемешивания смеси и выгрузки бетона выполняются автоматически.

Рабочее место оператора(APM)

Рис. 6. Рабочее место оператора(APM)

Специалистами ТЕНЗО-М разработан упрощенный вариант автоматизированной системы управления производством бетона на базе контроллеров без использования компьютера для небольших бетоносмесительных установок.

Для обеспечения нормальной работы пневмоавтоматики рекомендуем установить блок подготовки сжатого воздуха, поступающего от компрессора.

Модернизация дозаторно-смесительного отделения бетоносмесительной установки обеспечивает:

Реальное повышение производительности на 10 – 15 %;

Повышение качества выпускаемой бетонной смеси за счет высокой точности дозирования компонентов, автоматического контроля подвижности и гомогенности бетонной смеси, соблюдения технологического регламента за счет максимально возможного исключения человеческого фактора;

Возможностью документального подтверждения качества каждой выпущенной партии бетона. При необходимости возможна выдача отчетов по каждой дозе смеси с указанием как необходимого по рецепту, так и фактически дозированного сырья;

Снижение издержек на 5 – 10 % за счет рационального использование сырья;

Автоматизированный учет расхода цемента, песка, щебня, воды и химических добавок, а также произведенного бетона.

За последние три года успешно проведена модернизация дозаторно- смесительных отделений на ряде предприятий Москвы и Московской области, в г.Калининграде, г.Сургуте, г.Ржеве и других городах.

Инженерами «ТЕНЗО-М» накоплен значительный опыт проведения работ по модернизации дозаторно-смесительных отделений бетоносмесительных заводов.

Все изделия и системы сопровождаются необходимым комплектом эксплуатационной документации, имеют 12 месяцев гарантии и обеспечиваются сопровождением в течение всего срока эксплуатации.

Весоизмерительные и дозирующие устройства внесены в Государственный реестр средств измерений.

Полная номенклатура продукции, выпускаемой ЗАО «ВИК «Тензо-М», представлена на сайте www.tenso-m.ru.

Приглашаем посетить наше предприятие, где можно провести консультации с ведущими специалистами по вопросам модернизации БСУ.

140050,
Московская область,
г.о. Люберцы, дп. Красково,
ул. Вокзальная, 38

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector